【NeurIPS 2023】时空数据挖掘论文
对NeurIPS 2023的录用论文进行了整理,筛选出其中与时空数据挖掘相关论文,如下。
NeurIPS 2023论文录用列表: https://openreview.net/group?id=NeurIPS.cc/2023/Conference
- Automatic Integration for Spatiotemporal Neural Point Processes. Zihao Zhou, Rose Yu. paper
- Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice Perspective. Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, Enhong Chen. paper
- BasisFormer: Attention-based Time Series Forecasting with Learnable and Interpretable Basis. Zelin Ni, Hang Yu, Shizhan Liu, Jianguo Li , Weiyao Lin. paper
- BioMassters: A Benchmark Dataset for Forest Biomass Estimation using Multi-modal Satellite Time-series. Andrea Nascetti, Ritu Yadav, Kirill Brodt, Qixun Qu, Hongwei Fan, Yuri Shendryk, Isha Shah, Christine Chung. paper
- Creating High-Fidelity Synthetic GPS Trajectory Dataset for Urban Mobility Analysis. Yuanshao Zhu, Yongchao Ye, Ying Wu, Xiangyu Zhao, James Yu. paper
- Contrast Everything: Multi-Granularity Representation Learning for Medical Time-Series. Yihe Wang, Yu Han, Haishuai Wang, Xiang Zhang. paper
- ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling. Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, Dongsheng Li. paper
- Causal Discovery from Subsampled Time Series with Proxy Variables. Mingzhou Liu, Xinwei Sun, Lingjing Hu, Yizhou Wang. paper
- Causal Discovery in Semi-Stationary Time Series. Shanyun Gao, Raghavendra Addanki, Tong Yu, Ryan Rossi, Murat Kocaoglu. paper
- CrossGNN: Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement. Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, Yang Wang. paper
- Conformal Prediction for Time Series with Modern Hopfield Networks. Andreas Auer, Martin Gauch, Daniel Klotz, Sepp Hochreiter. paper
- Conformal Scorecasting: Anticipatory Uncertainty Quantification for Distribution Shift in Time Series. Anastasios Angelopoulos, Ryan Tibshirani, Emmanuel Candes. paper
- DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model. Yuanshao Zhu, Yongchao Ye, Shiyao Zhang, Xiangyu Zhao, James Yu. paper
- DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal Forecasting. Salva Rühling Cachay, Bo Zhao, Hailey James, Rose Yu. paper
- Drift doesn’t Matter: Dynamic Decomposition with Diffusion Reconstruction for Unstable Multivariate Time Series Anomaly Detection. Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Xingyu Wang, Zirui Zhuang, Jianxin Liao. papercode
- Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. Yutong Xia, Yuxuan Liang, Haomin Wen, Xu Liu, Kun Wang, Zhengyang Zhou, Roger Zimmermann. paper
- Equivariant Spatio-Temporal Attentive Graph Networks to Simulate Physical Dynamics. Liming Wu, Zhichao Hou, Jirui Yuan, Yu Rong, Wenbing Huang. paper
- Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency. Owen Queen, Thomas Hartvigsen, Teddy Koker, Huan He, Theodoros Tsiligkaridis, Marinka Zitnik. paper
- Equivariant Neural Simulators for Stochastic Spatiotemporal Dynamics. Koen Minartz, Yoeri Poels, Simon Koop, Vlado Menkovski. paper
- Fine-Grained Spatio-Temporal Particulate Matter Dataset From Delhi For ML based Modeling. Sachin Chauhan, Zeel Bharatkumar Patel, Sayan Ranu, Rijurekha Sen, Nipun Batra. paper
- Frequency-domain MLPs are More Effective Learners in Time Series Forecasting. Kun Yi, Qi Zhang, Wei Fan, Hui He, Pengyang Wang, Shoujin Wang, Ning An, Defu Lian, Longbing Cao, Zhendong Niu. paper
- FOCAL: Contrastive Learning for Multimodal Time-Series Sensing Signals in Factorized Orthogonal Latent Space. Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, Tarek Abdelzaher. paper
- FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective. Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, Zhendong Niu. paper
- Finding Order in Chaos: A Novel Data Augmentation Method for Time Series in Contrastive Learning. Berken Utku Demirel, Christian Holz. papercode
- Generative Pre-Training of Spatio-Temporal Graph Neural Networks. Zhonghang Li, Lianghao Xia, Yong Xu, Chao Huang. paper
- Integration-free Training for Spatio-temporal Multimodal Covariate Deep Kernel Point Processes. Yixuan Zhang, Quyu Kong, Feng Zhou. paper
- Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors. Yong Liu, Chenyu Li, Jianmin Wang, Mingsheng Long. papercode
- LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting. Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao Huang, Zhenguang Liu, Bryan Hooi, Roger Zimmermann. papercode
- Large Language Models Are Zero Shot Time Series Forecasters. Marc Finzi, Nate Gruver, Shikai Qiu, Andrew Wilson. paper
- MEMTO: Memory-guided Transformer for Multivariate Time Series Anomaly Detection. Junho Song, Keonwoo Kim, Jeonglyul Oh, Sungzoon Cho. papercode
- Nominality Score Conditioned Time Series Anomaly Detection by Point/Sequential Reconstruction. Chih-Yu Lai, Fan-Keng Sun, Zhengqi Gao, Jeffrey H Lang, Duane Boning. papercode
- OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning. Cheng Tan, Siyuan Li, Zhangyang Gao, Wenfei Guan, Zedong Wang, Zicheng Liu, Lirong Wu, Stan Z. Li. papercode
- OneNet: Enhancing Time Series Forecasting Models under Concept Drift by Online Ensembling. Yifan Zhang, Qingsong Wen, Xue Wang, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan. papercode
- One Fits All: Power General Time Series Analysis by Pretrained LM. Tian Zhou, Peisong Niu, xue wang, Liang Sun, Rong Jin. paper
- On the Constrained Time-Series Generation Problem. Andrea Coletta, Sriram Gopalakrishnan, Daniel Borrajo, Svitlana Vyetrenko. paper
- Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting. Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, Yuyang (Bernie) Wang. paper
- SpatialRank: Urban Event Ranking with NDCG Optimization on Spatiotemporal Data. Bang An, Xun Zhou, Yongjian Zhong, Tianbao Yang. paper
- Sparse Graph Learning from Spatiotemporal Time Series. Andrea Cini, Daniele Zambon, Cesare Alippi. paper
- Sparse Deep Learning for Time Series Data: Theory and Applications. Mingxuan Zhang, Yan Sun, Faming Liang. paper
- Scale-teaching: Robust Multi-scale Training for Time Series Classification with Noisy Labels. Zhen Liu, ma peitian, Dongliang Chen, Wenbin Pei, Qianli Ma. papercode
- SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling. Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, Mingsheng Long. papercode
- Taming Local Effects in Graph-based Spatiotemporal Forecasting. Andrea Cini, Ivan Marisca, Daniele Zambon, Cesare Alippi. paper
- Time Series Kernels based on Nonlinear Vector AutoRegressive Delay Embeddings. Giovanni De Felice, John Goulermas, Vladimir Gusev. paper
- Time Series as Images: Vision Transformer for Irregularly Sampled Time Series. Zekun Li, Shiyang Li, Xifeng Yan. paper
- UUKG: Unified Urban Knowledge Graph Dataset for Urban Spatiotemporal Prediction. Yansong Ning, Hao Liu, Hao Wang, Zhenyu Zeng, Hui Xiong. papercode
- What if We Enrich day-ahead Solar Irradiance Time Series Forecasting with Spatio-Temporal Context? Oussama Boussif, Ghait Boukachab, Dan Assouline, Stefano Massaroli, Tianle Yuan, Loubna Benabbou, Yoshua Bengio. papercode
- WITRAN: Water-wave Information Transmission and Recurrent Acceleration Network for Long-range Time Series Forecasting. Yuxin Jia, Youfang Lin, Xinyan Hao, Yan Lin, Shengnan Guo, Huaiyu Wan. papercode
- WildfireSpreadTS: A dataset of multi-modal time series for wildfire spread prediction. Sebastian Gerard, Yu Zhao, Josephine Sullivan. paper
发现更多
- 时空数据挖掘
- 时空数据挖掘论文库
- 半亩方塘:【时空数据挖掘】推开窗,看一看
- 半亩方塘:【时空数据挖掘】 - 层次体系构建
- 半亩方塘:【时空数据挖掘】- 任务
- 半亩方塘:【时空数据挖掘】- 方法
- 半亩方塘:【时空数据挖掘】- 数据
- 【KDD 2023】时空数据挖掘论文
- 【ICLR 2023】 时空数据挖掘论文
- 半亩方塘:【ICLR 2022】时空数据挖掘论文
- 半亩方塘:【ICML 2022】时空数据挖掘论文
- 半亩方塘:【IJCAI 2022】时空数据挖掘论文
- 半亩方塘:【KDD 2022】时空数据挖掘论文
- 半亩方塘:【WSDM 2022】时空数据挖掘论文
- 半亩方塘:【AAAI 2022】时空数据挖掘论文
- 半亩方塘:【图神经网络】近3年用于时空数据挖掘的图神经网络论文(2018-2021)
- 半亩方塘:【KDD 2021 】时空数据挖掘论文
- 半亩方塘:【IJCAI 2021 】时空数据挖掘论文
- 半亩方塘:【WWW 2021 】时空数据挖掘论文
- 半亩方塘:【ACM SIGSPATIAL 2021】时空数据挖掘论文
参考资料
- NeurIPS 2023 时间序列(Time Series)论文总结 https://zhuanlan.zhihu.com/p/659088918
- NeurIPS 2023 时空数据论文总结 https://zhuanlan.zhihu.com/p/659050798
- 时空数据顶会论文总结 https://www.zhihu.com/column/c_1683852314232885248
【NeurIPS 2023】时空数据挖掘论文
https://xiepeng21.cn/posts/3727adf0/