【ICLR 2024】时空数据挖掘论文

对ICLR 2024的录用论文进行了整理,筛选出其中与时空数据挖掘相关论文,并进行任务分类,共50篇。

Air Quality Prediction (1) 空气质量预测

  1. AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality Prediction. https://openreview.net/forum?id=JW3jTjaaAB

Climate Forecasting (1) 气候预测

  1. ClimODE: Climate Forecasting With Physics-informed Neural ODEs. https://openreview.net/forum?id=xuY33XhEGR

Dynamic Graph (1) 动态图

  1. Causality-Inspired Spatial-Temporal Explanations for Dynamic Graph Neural Networks. https://openreview.net/forum?id=AJBkfwXh3u

Geospatial Knowledge Extraction (1) 地理空间知识提取

  1. GeoLLM: Extracting Geospatial Knowledge from Large Language Models. https://openreview.net/forum?id=TqL2xBwXP3

Long-term Time Series Forecasting (2) 长时间序列预测

  1. Periodicity Decoupling Framework for Long-term Series Forecasting. https://openreview.net/forum?id=dp27P5HBBt
  2. Self-Supervised Contrastive Forecasting. https://openreview.net/forum?id=nBCuRzjqK7

Spatio-Temporal Graph Transfer Learning (1) 时空图迁移学习

  1. A Generative Pre-Training Framework for Spatio-Temporal Graph Transfer Learning. https://openreview.net/forum?id=QyFm3D3Tzi

Spatio-Temporal Causal inference (1) 时空因果推断

  1. NuwaDynamics: Discovering and Updating in Causal Spatio-Temporal Modeling. https://openreview.net/forum?id=sLdVl0q68X

Time Series Forecasting (20) 时间序列预测

  1. Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Values. https://openreview.net/forum?id=O9nZCwdGcG
  2. CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting. https://openreview.net/forum?id=MJksrOhurE
  3. Copula Conformal prediction for multi-step time series prediction. https://openreview.net/forum?id=ojIJZDNIBj
  4. DAM: A Foundation Model for Forecasting. https://openreview.net/forum?id=4NhMhElWqP
  5. iTransformer: Inverted Transformers Are Effective for Time Series Forecasting. https://openreview.net/forum?id=JePfAI8fah
  6. Interpretable Sparse System Identification: Beyond Recent Deep Learning Techniques on Time-Series Prediction. https://openreview.net/forum?id=aFWUY3E7ws
  7. Multi-Resolution Diffusion Models for Time Series Forecasting. https://openreview.net/forum?id=mmjnr0G8ZY
  8. MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process. https://openreview.net/forum?id=CZiY6OLktd
  9. Multi-scale Transformers with Adaptive Pathways for Time Series Forecasting. https://openreview.net/forum?id=lJkOCMP2aW
  10. Rethinking Channel Dependence for Multivariate Time Series Forecasting: Learning from Leading Indicators. https://openreview.net/forum?id=JiTVtCUOpS
  11. RobustTSF: Towards Theory and Design of Robust Time Series Forecasting with Anomalies. https://openreview.net/forum?id=ltZ9ianMth
  12. SocioDojo: Building Lifelong Analytical Agents with Real-world Text and Time Series. https://openreview.net/forum?id=s9z0HzWJJp
  13. STanHop: Sparse Tandem Hopfield Model for Memory-Enhanced Time Series Prediction. https://openreview.net/forum?id=6iwg437CZs
  14. Transformer-Modulated Diffusion Models for Probabilistic Multivariate Time Series Forecasting. https://openreview.net/forum?id=qae04YACHs
  15. Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. https://openreview.net/forum?id=Unb5CVPtae
  16. TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting. https://openreview.net/forum?id=YH5w12OUuU
  17. TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series. https://openreview.net/forum?id=xtOydkE1Ku
  18. Towards Transparent Time Series Forecasting. https://openreview.net/forum?id=TYXtXLYHpR
  19. TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting. https://openreview.net/forum?id=7oLshfEIC2
  20. VQ-TR: Vector Quantized Attention for Time Series Forecasting. https://openreview.net/forum?id=IxpTsFS7mh

Temporal Graphs (1) 时序图

  1. Beyond Spatio-Temporal Representations: Evolving Fourier Transform for Temporal Graphs. https://openreview.net/forum?id=uvFhCUPjtI

Time Series Imputation (1) 时间序列填补

  1. Conditional Information Bottleneck Approach for Time Series Imputation. https://openreview.net/forum?id=K1mcPiDdOJ

Time Series Causal Discovery (1) 时间序列因果发现

  1. CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery. https://openreview.net/forum?id=iad1yyyGme

Time Series Generation (2) 时间序列生成

  1. Diffusion-TS: Interpretable Diffusion for General Time Series Generation. https://openreview.net/forum?id=4h1apFjO99
  2. Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs. https://openreview.net/forum?id=eY7sLb0dVF

Time Series Representations (2) 时间序列表示

  1. Disentangling Time Series Representations via Contrastive based $l$− Variational Inference.   https://openreview.net/forum?id=iI7hZSczxE
  2. T-Rep: Representation Learning for Time Series using Time-Embeddings. https://openreview.net/forum?id=3y2TfP966N

Time Series Analysis (2) 时间序列分析

  1. FITS: Modeling Time Series with 10$k$ Parameters. https://openreview.net/forum?id=bWcnvZ3qMb
  2. ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis. https://openreview.net/forum?id=vpJMJerXHU

Time Series Explanation (1) 时间序列解释

  1. Explaining Time Series via Contrastive and Locally Sparse Perturbations. https://openreview.net/forum?id=qDdSRaOiyb

Time Series Pattern Recognition (1) 时间序列模式识别

  1. Generative Learning for Financial Time Series with Irregular and Scale-Invariant Patterns. https://openreview.net/forum?id=CdjnzWsQax

Time Series Embedding (3) 时间序列嵌入

  1. GAFormer: Enhancing Timeseries Transformers Through Group-Aware Embeddings. https://openreview.net/forum?id=c56TWtYp0W
  2. Learning to Embed Time Series Patches Independently. https://openreview.net/forum?id=WS7GuBDFa2
  3. TEST: Text Prototype Aligned Embedding to Activate LLM’s Ability for Time Series. https://openreview.net/forum?id=Tuh4nZVb0g

Time Series Classification (2) 时间序列分类

  1. Inherently Interpretable Time Series Classification via Multiple Instance Learning. https://openreview.net/forum?id=xriGRsoAza
  2. Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data. https://openreview.net/forum?id=4VIgNuQ1pY

Time Series Alignment (1) 时间序列对齐

  1. Leveraging Generative Models for Unsupervised Alignment of Neural Time Series Data. https://openreview.net/forum?id=9zhHVyLY4K

Time Series Contrastive Learning (4) 时间序列对比学习

  1. Parametric Augmentation for Time Series Contrastive Learning. https://openreview.net/forum?id=EIPLdFy3vp
  2. Retrieval-Based Reconstruction For Time-series Contrastive Learning. https://openreview.net/forum?id=3zQo5oUvia
  3. Soft Contrastive Learning for Time Series. https://openreview.net/forum?id=pAsQSWlDUf
  4. Towards Enhancing Time Series Contrastive Learning: A Dynamic Bad Pair Mining Approach. https://openreview.net/forum?id=K2c04ulKXn

Traffic Predictoin (1) 交通预测

  1. TESTAM: A Time-Enhanced Spatio-Temporal Attention Model with Mixture of Experts. https://openreview.net/forum?id=N0nTk5BSvO

更多

  1. 时空数据挖掘论文库 Research of Spatio-Temporal Data Mining
  2. 【KDD 2023】时空数据挖掘论文 半亩方塘:【KDD 2023】时空数据挖掘论文
  3. 【ICLR 2023】 时空数据挖掘论文 半亩方塘:【ICLR 2023】时空数据挖掘论文
  4. 【NeurIPS 2023】时空数据挖掘论文 【NeurIPS 2023】时空数据挖掘论文
  5. 【ICLR 2022】 时空数据挖掘论文 半亩方塘:【ICLR 2022】时空数据挖掘论文
  6. 【ICML 2022】时空数据挖掘论文 半亩方塘:【ICML 2022】时空数据挖掘论文
  7. 【IJCAI 2022】时空数据挖掘论文 半亩方塘:【IJCAI 2022】时空数据挖掘论文
  8. 【KDD 2022】时空数据挖掘论文 半亩方塘:【KDD 2022】时空数据挖掘论文
  9. 【WSDM 2022】时空数据挖掘论文 半亩方塘:【WSDM 2022】时空数据挖掘论文
  10. 【AAAI 2022】 时空数据挖掘论文 半亩方塘:【AAAI 2022】时空数据挖掘论文
  11. 近3年用于时空数据挖掘的图神经网络论文(2018-2021)半亩方塘:【图神经网络】近3年用于时空数据挖掘的图神经网络论文(2018-2021)
  12. 【KDD 2021】 时空数据挖掘论文 半亩方塘:【KDD 2021 】时空数据挖掘论文
  13. 【IJCAI 2021】 时空数据挖掘论文 半亩方塘:【IJCAI 2021 】时空数据挖掘论文
  14. 【WWW 2021】 时空数据挖掘论文 半亩方塘:【WWW 2021 】时空数据挖掘论文
  15. 【ACM SIGSPATIAL 2021】 时空数据挖掘论文 半亩方塘:【ACM SIGSPATIAL 2021】时空数据挖掘论文
  16. 【时空数据挖掘】推开窗,看一看 半亩方塘:【时空数据挖掘】推开窗,看一看
  17. 【时空数据挖掘】 - 层次体系构建 半亩方塘:【时空数据挖掘】 - 层次体系构建
  18. 【时空数据挖掘】- 任务 半亩方塘:【时空数据挖掘】- 任务
  19. 【时空数据挖掘】- 方法 半亩方塘:【时空数据挖掘】- 方法
  20. 【时空数据挖掘】- 数据 半亩方塘:【时空数据挖掘】- 数据

【ICLR 2024】时空数据挖掘论文
https://xiepeng21.cn/posts/3d1ac43b/
作者
Peter
发布于
2024年1月23日
许可协议